首页> 外文OA文献 >Combining Progressive Hedging with a Frank-Wolfe Method to Compute Lagrangian Dual Bounds in Stochastic Mixed-Integer Programming
【2h】

Combining Progressive Hedging with a Frank-Wolfe Method to Compute Lagrangian Dual Bounds in Stochastic Mixed-Integer Programming

机译:将渐进式套期保值与Frank-Wolfe方法相结合进行计算   随机混合整数规划中的拉格朗日双界

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We present a new primal-dual algorithm for computing the value of theLagrangian dual of a stochastic mixed-integer program (SMIP) formed by relaxingits nonanticipativity constraints. This dual is widely used in decompositionmethods for the solution of SMIPs. The algorithm relies on the well-knownprogressive hedging method, but unlike previous progressive hedging approachesfor SMIP, our algorithm can be shown to converge to the optimal Lagrangian dualvalue. The key improvement in the new algorithm is an inner loop of optimizedlinearization steps, similar to those taken in the classical Frank-Wolfemethod. Numerical results demonstrate that our new algorithm empiricallyoutperforms the standard implementation of progressive hedging for obtainingbounds in SMIP.
机译:我们提出了一种新的原始对偶算法,用于计算通过放宽其非预期约束而形成的随机混合整数程序(SMIP)的拉格朗日对偶的值。该对偶被广泛用于SMIP解决方案的分解方法中。该算法依赖于众所周知的渐进式套期保值方法,但是与以前的SMIP渐进式套期保值方法不同,我们的算法可以证明收敛于最优拉格朗日对偶值。新算法的关键改进是优化线性化步骤的内部循环,类似于经典的Frank-Wolfemethod中所采取的步骤。数值结果表明,我们的新算法在经验上优于逐步套期保值在SMIP中获得边界的标准实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号